Posted on

weed seed bank management

The weed seed bank serves as a physical history of the past successes and failures of cropping systems, and knowledge of its content (size and species composition) can help producers both anticipate and ameliorate potential impacts of crop–weed competition on crop yield and quality. Eliminating “deposits” to the weed seed bank—also called seed rain—is the best approach to ease future weed management. Over a five-year period in Nebraska, broadleaf and grass weed seed banks were reduced to 5 percent of their original density when weeds were not allowed to produce seeds. However, in the sixth year, weeds were not controlled and the seed bank density increased to 90 percent of the original level (Burnside et al., 1986).

Remember that none of these strategies can be expected to eliminate the weed seed bank, and also that you may need to change seed bank management strategy as the seed bank itself changes. The reason the weed seed bank is so difficult to manage is because it contains not only many seeds, but many different kinds of seeds, with typically 20 to 50 different weed species in a single field. In other words, the grower may have to deal with 20 to 50 different plant survival strategies! Thus, there will almost always be some weeds that tolerate, or even thrive on, whatever combination of seed bank management strategies the farmer adopts.

What is the Weed Seed Bank, and Why is it Important to Organic Farmers?

Weed seeds can have numerous fates after they are dispersed into a field (Fig. 1). Some seeds germinate, emerge, grow, and produce more seeds; others germinate and die, decay in the soil, or fall to predation. The seeds and other propagules of most weeds have evolved mechanisms that render a portion (a large majority in some species) of propagules dormant (alive but not able to germinate) or conditionally dormant (will not germinate unless they receive specific stimuli such as light) for varying periods of time after they are shed. This helps the weed survive in a periodically disturbed, inhospitable, and unpredictable environment. Weed seeds can change from a state of dormancy to nondormancy, in which they can then germinate over a wide range of environmental conditions. Because dormant weed seeds can create future weed problems, weed scientists think of dormancy as a dispersal mechanism through time.

Another measure that can help contain seed bank populations is to increase the diversity of crop rotations. Although data on the effects of crop rotations on weed seed banks in organic systems have not been consistent, there is some evidence suggesting that more diverse rotations, especially those that include one or more years in red clover, alfalfa, or other perennial sod crops, can help reduce seed inputs from velvetleaf and other annual weeds, and promote seed bank declines through seed predation and decay (Davis et al., 2005; Teasdale et al., 2004; Westerman et al., 2005).

Maintaining excellent weed control for several consecutive seasons can eliminate a large majority of the weed seed bank, but a small percentage of viable, highly dormant seeds persist, which can be difficult to eliminate (Egley, 1986). Researchers are seeking more effective means to flush out these dormant seeds through multiple stimuli (Egley, 1986).

The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes weed seed depth in the soil, which plays a role in weed species shifts and affects efficacy of control practices. Crop rotation and weed control practices also affect the weed seedbank. Information on the influence of cropping practices on the weed seedbank should be a useful tool for integrated weed management. Decision aid models use information on the weed seedbank to estimate weed populations, crop yield loss, and recommend weed control tactics. Understanding the light requirements of weed seed may provide new approaches to weed management. Improving and applying our understanding of weed seedbank dynamics is essential to developing improved weed management systems. The principles of plant ecology must be integrated with the science of weed management to develop strategies that take advantage of basic plant responses in weed management systems for agronomic crops.