Posted on

figurs weed seeds can germinate after many years

Our systems have detected unusual traffic activity from your network. Please complete this reCAPTCHA to demonstrate that it’s you making the requests and not a robot. If you are having trouble seeing or completing this challenge, this page may help. If you continue to experience issues, you can contact JSTOR support.

Block Reference: #911f38a0-d504-11eb-aab3-9734cc4a2109
VID: #(null)
IP: 193.188.21.42
Date and time: Thu, 24 Jun 2021 15:55:15 GMT

Renner, K. A. 1999. Weed ecology and management. Pages 51-68 in Michigan Field Crop Pest Ecology and Management. M. Cavigelli, ed. Michigan State University Extension Bulletin E-2704.

Number of seeds per square foot

Table 2. Typical Michigan weed seed production

Managing the Weed Seedbank

Weed density (per 33 feet of crop row)

Other farming practices can influence the weed seedbank. Burying weed seed by tilling the soil increases longevity of weed seeds in the seedbank. Leaving weed seeds on the soil surface exposes weed seeds to predation which will reduce the number of weed seeds in the seedbank. Leaving weed seeds on or near the soil surface may increase the number of weed seeds that decay after being infected by fungi or other microorganisms. Livestock manure that is stored has fewer viable weed seeds compared to fresh manure. Cleaning tillage and harvest equipment can reduce the movement of weed seed from field to field.

The best way to manage the weed seedbank is to not allow weeds to set seed in the field. Over a six-year period in Colorado, common lambsquarters and redroot pigweed seeds were reduced to 6 and 1 percent, respectively, of the original seedbank in a continuous corn rotation where herbicides were applied and the fields cultivated (Schweizer and Zimdahl, 1984). In a Nebraska study, the broadleaf and grass weed seed density in soil declined by 95 percent over a five-year period. However in the sixth year weeds were not controlled and the weed seedbank increased to within 90 percent of the original level at two of five locations (Burnside et al., 1986). These studies illustrate two important points in weed seedbank management. First, there is a rapid decline in the weed seedbank when weeds are not allowed to set seed. Secondly, the few weed seeds remaining in the weed seedbank are capable of infesting the farm fields and returning the number of weed seeds in the seedbank to high levels. Therefore weeds must be managed every year to reduce the weed seedbank.

Understanding weed seedbank dynamics is the first step in managing the weed seedbank. Reducing the number of weed seeds in the weed seedbank will improve our management of weeds in agroecosystems.